Nanotechnology (NANO)

Matthew B. Leftwich Director 479-575-2875 mleftwi@uark.edu

Nanotechnology Minor Faculty Coordinators and Curriculum Committee

- Gregory Salamo, Distinguished Professor, Physics
- Min Zou, Professor, Mechanical Engineering
- Jin-Woo Kim, Professor, Biological and Agricultural Engineering
- Raj Rao, Professor, Biological and Agricultural Engineering
- Karthik Nayani, Assistant Professor, Chemical Engineering
- Jingyi Chen, Professor, Chemistry and Biochemistry
- Fisher Yu, Professor, Electrical Engineering
- Steve Tung, Professor, Mechanical Engineering
- Po-Hao Adam Huang, Associate Professor, Mechanical Engineering
- Keisha Bishop Walters, Department Head and Professor, Chemical Engineering

The Nanotechnology minor is an interdisciplinary program that provides students with foundational knowledge and skills related to the emerging field of nanotechnology, including hands-on experience in several major areas of nanotechnology, such as synthesis of nanomaterials, nanoscale imaging, nanostructure assembly and manipulation, device and system integration, and performance evaluation. The Nanotechnology minor draws faculty expertise and coursework from the College of Engineering and the Fulbright College of Arts and Sciences and utilizes state-of-the-art equipment and facilities at the Institute for Nanoscience and Engineering. The Nanotechnology minor is intended to prepare participating students for a career in which nanotechnology is playing an increasingly important role, and increase students' research competitiveness for graduate studies. The Nanotechnology minor is designed to be accessible to students majoring in engineering, physics, or chemistry and biochemistry. It is open to all students who have the necessary prerequisites to enroll in the courses that constitute the minor.

Requirements for the Nanotechnology Minor

Students wishing to participate in the Nanotechnology minor must declare participation formally. The students are required to meet with the faculty coordinator of an individual department who will help the student to develop a list of courses suitable for the minor and a schedule for taking those courses. Examples of model programs for each participating department are given below.

Students need to take a total of 15 credit hours, which includes 6 credit hours of required courses and 9 credit hours of elective courses and must earn a grade of "C" or better for all courses used to fulfill the requirements of the Nanotechnology minor.

Required Research Courses

Nanotechnology Research (Independent Study or Honors Thesis in nanotechnology)

Students can choose from the following courses:BENG 4500VSpecial ProblemsBENG 451HVHonors ThesisBMEG 450HVHonors Thesis

	BMEG 4600V	Individual Study	
	or BMEG 46	0H0v/ors Individual Study	
	CHEG 4880V	Special Problems	
	CHEM 4000V	Chemistry Research	
	or CHEM 40	0H0viors Chemistry Research	
	ELEG 4880V	Special Problems	
	MEEG 490H3	Honors Mechanical Engineering Research	
	MEEG 4920V	Individual Study in Mechanical Engineering	
	or MEEG 49	Honors Individual Study in Mechanical Engineering	
	PHYS 3060V	Projects	
	PHYS 399HV	Honors	
	PHYS 4980V	Senior Thesis	
EI	ective Courses	i	
4	minimum of 9 ho	ours of elective courses selected from the following:	9
	BENG 31103	Measurement and Control for Biological Systems	
	or BENG 31	Honors Measurement and Control for Biological Systems	
	BENG 37303	Transport Phenomena in Biological Systems	
	BENG 47403	Food and Bio-Product Systems Engineering	
	BENG 41203	Biosensors & Bioinstrumentation	
	BENG 47403	Food and Bio-Product Systems Engineering	
	BMEG 36304	Biomaterials	
	BMEG 38204	Biomolecular Engineering	
	BMEG 42403	Advanced Biomaterials and Biocompatibility	
	CHEG 37103	Chemical Engineering Materials Technology	
	CHEG 50403	Colloid and Interface Science	
	CHEM 41203	Advanced Inorganic Chemistry I	
	CHEM 42203	Instrumental Analysis	
	CHEM 42803	Energy Conversion and Storage	
	CHEM 54403	Physical Chemistry of Materials	
	ELEG 42003	Semiconductor Devices	
	ELEG 43003	Introduction to Nanomaterials and Devices	
	MEEG 43003	Materials Laboratory	
	MEEG 43103	Introduction to Tribology	
	MEEG 52603	Introduction to Micro Electro Mechanical Systems	
	MEEG 53403	Computational Material Science	
	PHYS 32103	Electronics in Experimental Physics	
	PHYS 36103	Modern Physics	
	PHYS 40703	Introduction to Quantum Mechanics	
	PHYS 42103	Physics of Devices	
	PHYS 47103	Solid State Physics	
	PHYS 47703	Introduction to Optical Properties of Materials	
	or from other ap by the Nanotec course instructo	ppropriate courses not on this list if approved first hnology Minor Curriculum Committee and by the pr.	

Total Hours

6

Below are model programs for students from different participating departments. Students also have the flexibility to design their own programs according to the stated requirements above. 15

Model program for a student majoring in Biological Engineering

Required Courses (6 hours)

	Total Hours			
	BENG 41203	Biosensors & Bioinstrumentation		
	BENG 47403	Food and Bio-Product Systems Engineering		
	or BENG 31	l 111123 nors Measurement and Control for Biological Systems		
	BENG 31103	Measurement and Control for Biological Systems		
	Elective Courses	s (9 hours)	9	
	BENG 451HV	Honors Thesis	1-6	
	BENG 4500V	Special Problems	1-4	

Model program for a student majoring in Biomedical Engineering

Required Courses (6 hours)

BMEG 450HV	Honors Thesis	1-4
BMEG 4600V	Individual Study	1-3
or BMEG 460H	I₩onors Individual Study	
Elective Courses	s (9 hours)	9
BMEG 36304	Biomaterials	
BMEG 38204	Biomolecular Engineering	
BMEG 42403	Advanced Biomaterials and Biocompatibility	
Total Hours		

Model program for a student majoring in Chemical Engineering

Required Courses (6 hours)

Total Hours		
CHEM 42203	Instrumental Analysis	
CHEG 50403	Colloid and Interface Science	
CHEG 37103	Chemical Engineering Materials Technology	
Elective Courses (9 hours)		
CHEG 4880V	Special Problems	6

Model program for a student majoring in Chemistry

F	Required Course	es (6 hours)	6
	CHEM 4000V	Chemistry Research	
	or CHEM 40	Honors Chemistry Research	
E	Elective Courses	s (9 hours)	9
	CHEM 41203	Advanced Inorganic Chemistry I	
	CHEM 42203	Instrumental Analysis	
	CHEM 42803	Energy Conversion and Storage	
Total Hours			15

Model program for a student majoring in Electrical Engineering

Required Courses (6 hours)			5
ELEG 4	880V	Special Problems	
Elective Courses (9 hours)			9
PHYS 4	2103	Physics of Devices	

	ELEG 42003	Semiconductor Devices		
	ELEG 43003	Introduction to Nanomaterials and Devices		
	Total Hours		15	
Model program for a student majoring in Mechanical Engineering				
	Required Course	es		
	MEEG 4920V	Individual Study in Mechanical Engineering	3	
	or MEEG 492H	Honors Individual Study in Mechanical Engineering		
	MEEG 490H3	Honors Mechanical Engineering Research	3	
	Elective Courses	3	9	
	MEEG 43003	Materials Laboratory		
	MEEG 43103	Introduction to Tribology		
	MEEG 52603	Introduction to Micro Electro Mechanical Systems		
	Total Hours		15	
	Model prog	ram for a student majoring in		

Model program for a student majoring in Physics

Required Courses (6 hours) PHYS 3060V Projects 1-3 PHYS 4980V Senior Thesis 1-6 or PHYS 399HVHonors 1-6 Blective Courses (9 hours) 9 PHYS 40703 Introduction to Quantum Mechanics 9 PHYS 47103 Solid State Physics 1 PHYS 47703 Introduction to Optical Properties of Materials 15 Total Hours 15 15